3.3.26 \(\int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx\) [226]

Optimal. Leaf size=70 \[ -\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}+\frac {2 e^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{a d} \]

[Out]

-2*I*e^2*(e*sec(d*x+c))^(1/2)/a/d+2*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+
1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(e*sec(d*x+c))^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {3582, 3856, 2720} \begin {gather*} \frac {2 e^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{a d}-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x]),x]

[Out]

((-2*I)*e^2*Sqrt[e*Sec[c + d*x]])/(a*d) + (2*e^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d
*x]])/(a*d)

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3582

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^2*(
d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Dist[d^2*((m - 2)/(a*(m + n - 1
))), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2
 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx &=-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}+\frac {e^2 \int \sqrt {e \sec (c+d x)} \, dx}{a}\\ &=-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}+\frac {\left (e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{a}\\ &=-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}+\frac {2 e^2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.34, size = 49, normalized size = 0.70 \begin {gather*} \frac {2 e^2 \left (-i+\sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right ) \sqrt {e \sec (c+d x)}}{a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x]),x]

[Out]

(2*e^2*(-I + Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])*Sqrt[e*Sec[c + d*x]])/(a*d)

________________________________________________________________________________________

Maple [A]
time = 0.64, size = 174, normalized size = 2.49

method result size
default \(\frac {2 i \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (\EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-1\right ) \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \left (\cos ^{2}\left (d x +c \right )\right )}{a d \sin \left (d x +c \right )^{4}}\) \(174\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2*I/a/d*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*(1/(1+cos(d*x
+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/
2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-1)*(e/cos(d*x+c))^(5/2)*cos(d*x+c)^2/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 56, normalized size = 0.80 \begin {gather*} -\frac {2 \, {\left (i \, \sqrt {2} e^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right ) + \frac {i \, \sqrt {2} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c + \frac {5}{2}\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{a d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

-2*(I*sqrt(2)*e^(5/2)*weierstrassPInverse(-4, 0, e^(I*d*x + I*c)) + I*sqrt(2)*e^(1/2*I*d*x + 1/2*I*c + 5/2)/sq
rt(e^(2*I*d*x + 2*I*c) + 1))/(a*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \frac {i \int \frac {\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}{\tan {\left (c + d x \right )} - i}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(5/2)/(a+I*a*tan(d*x+c)),x)

[Out]

-I*Integral((e*sec(c + d*x))**(5/2)/(tan(c + d*x) - I), x)/a

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate(e^(5/2)*sec(d*x + c)^(5/2)/(I*a*tan(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i),x)

[Out]

int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i), x)

________________________________________________________________________________________